

地盤工学会千曲川流域調査団 中間報告

長岡技術科学大学 大塚 悟

Environment and Disaster Prevention Lab. Nagaoka University of Technology

調査団の構成

- 大塚悟(長岡技術科学大学,千曲川堤防調査委員会)
- 前田健一(名古屋工業大学)
- 小高猛司(名城大学)
- 杉井俊夫(中部大学)

中部支部

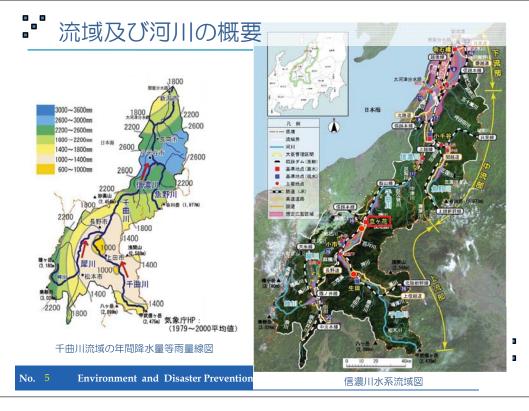
- 吉川高広(名古屋大学)
- 土本浩二 ((株)ダイヤコンサルタント)
- 肥後陽介(京都大学)

関西支部

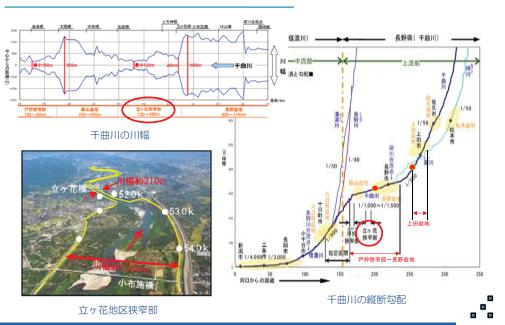
- 高原利幸(金沢工業大学)
- 竜田尚希(富山大学)
- 福元 豊(長岡技術科学大学)
- 新保泰輝(石川工業高等専門学校)

北陸支部

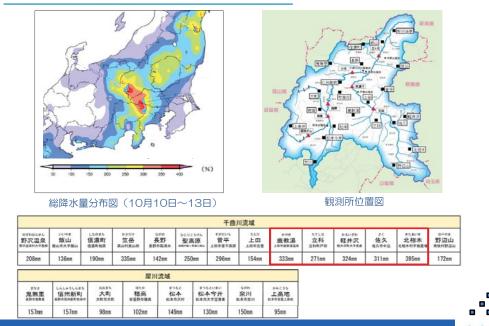
- 佐藤豊((株)キタック)
- 村尾秀彦((株)村尾地研)
- 安田浩保(新潟大学,千曲川堤防調査委員会) 土木学会


Io. 2 Environment and Disaster Prevention Lab. Nagaoka University of Technology

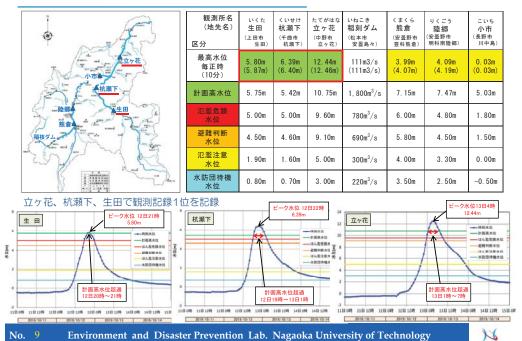
M


中間報告の概要

- 千曲川堤防調査委員会の資料(北陸地方整備局,公開資料)を基に 報告する.
- 報告内容
 - 千曲川・信濃川全域の被害(大塚)
 - 千曲川58K左岸 (穂保地区) の堤防破堤 (大塚)
 - 千曲川104K左岸 (諏訪形地区) の堤防欠損 (大塚)



河道特性(河床勾配、川幅縦断、河道状況)



気象概要 (降水量)

千曲川の河川水位

千曲川の被災状況(上流側)

信濃川の河川水位

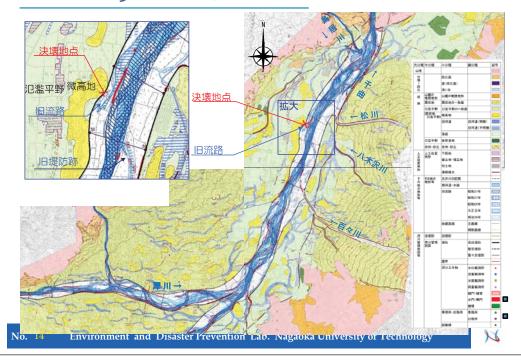
Environment and Disaster Prevention Lab. Nagaoka University of Technology

千曲川の被災状況(下流側)

Environment and Disaster Prevention Lab. Nagaoka University of Technology

千曲川58K (穂保地区) の浸水範囲

長野県の被害状況:長野県災害対策 本部(11月11日10:00現在)

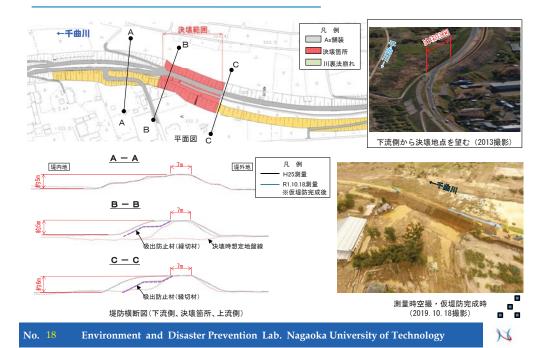

人的被害 (人	死者		5
	行方不明者		0
	負傷者	重傷	7
		軽傷	130
$\overline{}$	計		142
住家被害(世帯)	全壊		863
	半壊		2,002
	一部損壊		2,522
	上記以外	床上浸水	565
		床下浸水	2,220
	計		8,172

Environment and Disaster Prevention Lab. Nagaoka University of Technology

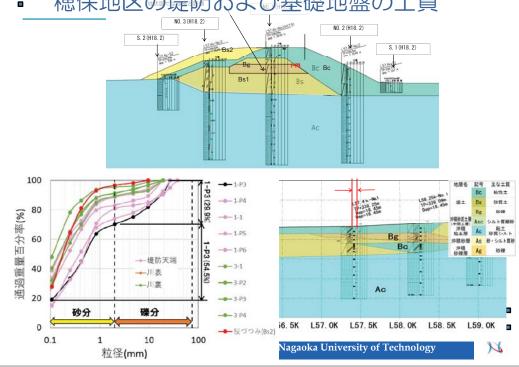
千曲川58K左岸(穂保地区)の堤防被害

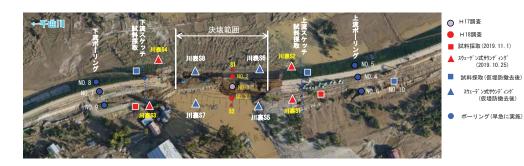
千曲川58K (穂保地区) の治水地形分類図

穂保地区の越流状況

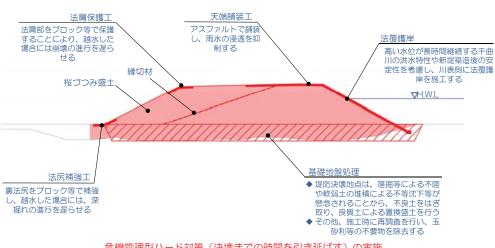


穂保地区の河川水位 -ク水位339.0r 危機管理型水位計 (L57.4k)水位 左岸堤防天端高 339 計画高水位 堤防天端高338.2m 338 計画高水位336,6m 12日22:40頃 吸出防止材 t=10mm 12日 18時 12日 20時 12日 22時 13日 0時 13日 2時 13日 4時 13日 6時 13日 8時 13日 10時 凡例 As舗装 決壊箇所 危機管理型水位計 川裏法崩れ ● 洪水痕跡調査位置 Environment and Disaster Prevention Lab. Nagaoka University of Technology N


■■ 穂保地区の堤防被害状況


" 堤防の平面および断面図 (穂保地区)

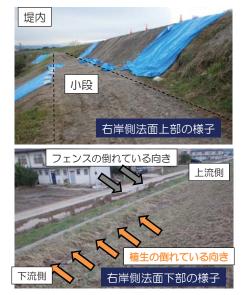
■ 穂保地区の堤防および基礎地盤の土質


穂保地区の堤防追加調査(於:復旧工事)

Environment and Disaster Prevention Lab. Nagaoka University of Technology

N

穂保地区の堤防復旧方針



危機管理型ハード対策(決壊までの時間を引き延ばす)の実施

※天端舗装工は、道路等の関係者と調整しながら決定する。 施工にあたっては、環境面に配慮し覆土等も検討する。 詳細な構造等については、現地調査等を行ったうえで詳細設計を実施し精査する必要がある。

千曲川58K右岸(相之島地区)の堤防被害

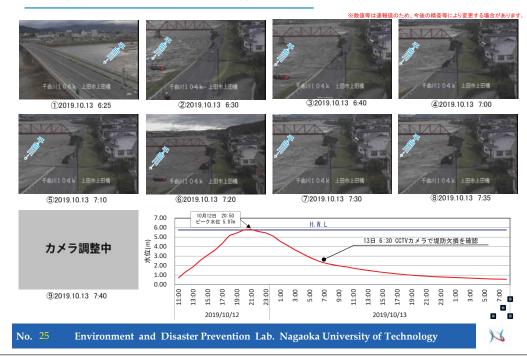
□ 坂路付近の堤体表面が流されている

□ フェンスが堤体側に倒れている→先に支川側から越流した?

前田委員(名工大)の報告

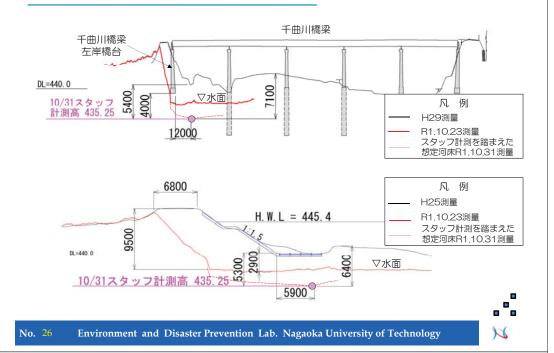
Environment and Disaster Prevention Lab. Nagaoka University of Technology

千曲川104K左岸(諏訪形地区)の堤防被害



被災箇所周辺では延長約300mにわたり欠損し、千曲川橋梁(上田電鉄)左岸側橋台が被災

■ 諏訪形地区の堤防被害と河川水位


■ 諏訪形地区の堤防基礎地盤

基礎地盤の種類		備考		
		kN/m2	N値	
岩盤	亀裂の少ない均一な硬岩	9810以上	-	
	亀裂の多い硬岩	9810以上	-	← 褐色
	軟岩、土丹	981以上	-	
	密なもの	-	-	
	密でないもの	-	-	
	密なもの	-	30~50	
	中位なもの	_	15~30	
盤土	非常に堅いもの	196~392	15~30	← 暗灰色
	堅いもの	98.1~196	8~15	
	中位なもの	49~98.1	4~8	

「河川砂防技術基準(案)設計編」

* 諏訪形地区の堤防被害(堤防欠損)

■■諏訪形地区の堤防被害

諏訪形地区の堤防復旧方針 【横断模式図】 法覆護岸 標準部 今次出水で被災を受けなかった周

辺護岸の構造を踏まえ「練石張・ ブロック張等」を採用する。 ∇ H.W.L 基礎工 根固工 被災時の河床高を含む経年的な河床変 動データによる評価高、上下流の整備 ◆ 今次出水で被災を受けなかった周辺護岸の構造 を踏まえ「4 t ブロック」を採用する。 済護岸基礎高等から設定 ◆ 洪水時の洗掘に対して基礎工を保護するために、 千曲川の実績を踏まえ根固工敷設幅を設定する。 根固減勢部 根固減勢部 堤脚護岸部での洪水エネルギーの減 勢を目的として、一定間隔で根固減 勢部を設置する。 0 0

No. 29

Environment and Disaster Prevention Lab. Nagaoka University of Technology

